Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii.
نویسندگان
چکیده
The tachyzoite stage of the protozoan parasite Toxoplasma gondii has two populations of microtubules: spindle microtubules and subpellicular microtubules. To determine how these two microtubule populations are regulated, we investigated microtubule behavior during the cell cycle following treatment with microtubule-disrupting drugs. Previous work had established that the microtubule populations are individually nucleated by two distinct microtubule-organizing centers (MTOCs): the apical polar ring for the subpellicular microtubules and spindle pole plaques/centrioles for the spindle microtubules. When replicating tachyzoites were treated with 0.5 microM oryzalin or 1.0 mM colchicine they retained the capacity to form a spindle and undergo nuclear division. Although these parasites could complete budding, they lost the bulk of their subpellicular microtubules and the ability to reinvade host cells. Both nascent spindle and subpellicular microtubules were disrupted in 2.5 microM oryzalin or 5.0 mM colchicine. Under these conditions, parasites grew in size and replicated their genome but were incapable of nuclear division. After removal from 0.5 microM oryzalin, Toxoplasma tachyzoites were able to restore normal subpellicular microtubules and a fully invasive phenotype. When oryzalin was removed from Toxoplasma tachyzoites treated with 2.5 microM drug, the parasites attempted to bud as crescent-shaped tachyzoites. Because the polyploid nuclear mass could not be correctly segregated, many daughter parasites lacked nuclei altogether although budding and scission from the maternal mass was able to be completed. Multiple MTOCs permit Toxoplasma tachyzoites to control nuclear division independently from cell polarity and cytokinesis. This unusual situation grants greater cell cycle flexibility to these parasites but abolishes the checks for coregulation of nuclear division and cytokinesis found in other eukaryotes.
منابع مشابه
TgATAT-Mediated α-Tubulin Acetylation Is Required for Division of the Protozoan Parasite Toxoplasma gondii
Toxoplasma gondii is a widespread protozoan parasite that causes potentially life-threatening opportunistic disease. New inhibitors of parasite replication are urgently needed, as the current antifolate treatment is also toxic to patients. Microtubules are essential cytoskeletal components that have been selectively targeted in microbial pathogens; further study of tubulin in Toxoplasma may rev...
متن کاملA novel actin-related protein is associated with daughter cell formation in Toxoplasma gondii.
Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of a...
متن کاملCompartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation.
Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) a...
متن کاملA MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus.
Apicomplexan parasites divide and replicate through a complex process of internal budding. Daughter cells are preformed within the mother on a cytoskeletal scaffold, endowed with a set of organelles whereby in the final stages the mother disintegrates and is recycled in the emerging daughters. How the cytoskeleton and the various endomembrane systems interact in this dynamic process remains poo...
متن کاملDual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division
Toxoplasma gondii possesses a highly polarized secretory system, which efficiently assembles de novo micronemes and rhoptries during parasite replication. These apical secretory organelles release their contents into host cells promoting parasite invasion and survival. Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression system, we unraveled novel functions of the cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 115 Pt 5 شماره
صفحات -
تاریخ انتشار 2002